
Predicting Roll Call Votes using Machine Learning Methods

Tom (Hyeon Seok) Yu * 1 Floyd Jiuyun Zhang * 1

Abstract

We present an approach for predicting roll-call
votes in the U.S. Congress, using bill text word
embedding as well as bill and Congress mem-
ber characteristics as inputs. Various prediction
models are implemented, tested and finally com-
bined using ensemble stacking. Our methods
yield higher accuracy than existing methods, es-
pecially for newly elected members of Congress.

1. Introduction
Every year, the United States Congress votes on hundreds of
bills, impacting individuals, social groups, and businesses in
the U.S. and beyond. Predicting how each member votes on
each bill is thus of enormous scholar, policy, and commer-
cial interests. In academic research, roll call vote predictions
have been applied to the testing of majority party agenda
power in Congress (Ballard 2021), a long-debated hypothe-
sis in political science (Cox and McCubbins 2005). In non-
academic settings, such predictions can help organizations
and business anticipate policy enactment and thereby reduce
policy uncertainty; such tools would also help identify per-
suadable legislators as subjects of influence and activism.
Here, we present a prediction approach based on bill texts
and congress member characteristics, which are taken as
inputs of our algorithms. The outputs are binary voting out-
comes, namely whether each member votes “yea” or “nay”
on the passage of each bill. We implement a variety of pre-
diction models (including logistic regressions, decision tree
methods, and ensemble stacking) and report their accuracy.
Our models achieve high accuracy rate and outperforms
existing alternatives. Further, our methods perform well on
predicting voting behaviors of newly elected members of
Congress without relying on additional information about
the members such as campaign finance and news reports,
which constitutes an improvement to the existing studies.
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2. Related Literature
Due to the intuitive structure of the problem as that of a
classification, a number of studies have applied machine
learning methods to predict roll call votes.

2.1. Predicting Roll Call Votes

Gerrish and Blei (2011) utilize the bill text data and the
Bayesian ideal point topic model to predict the roll call vote
and achieve about 4% accuracy gain relative to the baseline
that predicts all yea votes. Taking this work as a baseline,
Kraft, Jain, and Rush (2016) develop an embedding-based
model – specifically, GloVe embedding proposed by Pen-
nington, Socher, and Manning (2014) – that relies on text
and past voting data. Applying the model to the 106th-111th
Congress, the authors’ model makes about 2% gain to the
benchmark. Kornilova, Argyle, and Eidelman (2018) further
extends the literature by developing a convolutional neural
network model that takes bill summary text and sponsor data.
More recently, Ballard (2021) proposes a text-based model
using the Doc2Vec embedding method to achieve (to our
knowledge) the current state-of-the-art result of 94.8% accu-
racy on the out-of-sample prediction for final passage votes
in the House. One notable limit of these methods pertains
to their inability to make predictions for the newly elected
Congress members, who do not have any voting records,
hence ideological data, necessary for training their models.

2.2. Predicting Newly Elected Members’ Votes

There have been at least two attempts at closing the afore-
mentioned gap: using supervised-learning methods, Bonica
(2018) finds campaign finance data to be highly predictive of
voting behavior among newly-elected members. In addition
to bill text data, Patil et al. (2019) show that incorporating
information from newspaper texts and other knowledge base
can improve the prediction accuracy on those newly elected
members. Building on the existing literature, this paper
explores whether a model that utilizes bill text data and
other bill and legislator-specific features can yield a better
accuracy on the existing and newly elected members’ voting
behavior. In terms of the specific method, we emulate Nay
(2017)’s ensemble staking method, which has shown high
accuracy in predicting bill passage rates.



3. Dataset and Features
We collect data for roll-call votes and congressperson
(i.e., the voter)-specific features from VoteView.com,
and bill summary text along with bill(sponsor)-specific
data for the 113th-117th Congress (2013 - Present) from
GovInfo.gov. We link roll-call votes with the passage of
bills using PIPC data. 1 The unit of analysis is member-bill,
and in sum, we have 620,081 examples, about 103,000 votes
per congress. We apply the 70-20-10 train-validation-test
split. As the chamber could vote on the same bill multiple
times, only the latest votes on a given bill are retained, and
bills without the force of law (e.g., simple and concurrent
resolutions) are excluded from the analysis. Below lists the
set of bill and sponsor-specific features employed and notes
on pre-processing applied:

• Bill (sponsor)-specific features: Congress session,
chamber, state, sponsor party, committee reported, to-
tal number of co-sponsors, the share of co-sponsors
from the opposite party, the main topic, policy classifi-
cation.2

• Legislator (voting member)-specific features: party,
state.

• Bill summary text: 300 or 600 dimensions extracted
using Doc2Vec after applying preprocessing.3

Table 1 provides the summary statistics of key features by
Congress. At least three patterns stand out from the table.
First, newly elected members’ votes account for about 15%
of the total votes. Second, House votes make up almost
all the votes, which results from the fact that most of the
Senate’s votes pertain to nominations and that much fewer
bills go through roll calls in the Senate. Lastly, the share of
sponsors from the Democratic Party jumped in the 116th
Congress, as the Democrats retook the majority that year,
but regardless of the majority status, the share of co-sponsors
from the opposite party has remained relatively stable at
about 30%.

1https://www.ou.edu/carlalbertcenter/research/pipc-votes
2The policy classification is made by the Congressional Re-

search Service (“CRS”) and represents the major policy area to
which the given bill pertains.

3These summary texts are provided by CRS, and we applying
the following pre-processing: (1) remove all digits, punctuations,
section indicators, stop words, (2) stem each word, and (3) require
the minimum count of 15 (across all bills) to be included in the
dictionary. This leaves 7,030 unique words. Details on feature
extraction using Doc2Vec can be found in the Methods section.

Table 1. Summary Statistics by Congress

Variables 113 114 115 116 117
Total Votes 146,349 162,251 185,413 122,818 34,733
Total New Member Votes 25,309 22,301 23,842 24,283 4,628
House Share 0.98 0.97 0.98 0.96 0.97

Democrat Share 0.46 0.43 0.45 0.54 0.51
Senate Democrat Share 0.53 0.44 0.46 0.45 0.48
Bill-Specific Data
Sponsor Dem. Share 0.17 0.14 0.15 0.81 0.86
Avg. # of Cosponsors 34 28 20 50 61
Avg. Share of Opp. Party 0.30 0.27 0.31 0.29 0.26

4. Methods
4.1. Logistic Regression

Logistic regressions model output as distributed according
to a sigmoid function where the natural parameter is a linear
function of the inputs. Formally:

P (y = 1|x; θ) = hθ(x) =
1

1 + e−θT x

The cost function to minimize is given by:

Jθ =
1

2

N∑
i=1

(hθ(x
(i))− y(i))2

The function is optimized via the Newton Conjugate Gra-
dient Method, which combine Newton’s Method with a
line search to find a step size for each iteration along the
“Newton direction”. This line search is intended to find step
sizes more suitable for non-quadratic objective functions,
of which the logistic likelihood function is a member. One
drawback of “Newtonian” method is that it cannot distin-
guish a saddle point from a local optimum, but this is not a
problem here given GLMs have convex loss functions.

4.2. Regularized logistic regressions

The data is high-dimensional. It is plausible that the under-
lying problem is sparse as many dimensions of the large
word-embedding vector may not contain useful information
for predicting votes. To avoid possible overfitting, I also
implement regularized versions of logistic regression by
adding L1 penalization.

Jreg
θ =

1

2

N∑
i=1

(hθ(x
(i))− y(i))2 + λ

d∑
k=1

||θk||

Inputs are re-scaled/normalized for the implementation of
regularization. Due to its non-differentiability, standard
Newton approaches don’t work well with this function. In-
stead, the function is minimized using SAGA, an incremen-
tal gradient descent algorithm that is both fast and robust to
non-differentiability



4.3. Random Forest

Another baseline model we adopt based on existing liter-
ature is random forest, a bagging (boostrap-aggregating)
method (Breiman 2001; Bonica 2018; Nay 2017). In bag-
ging, an individual prediction ŷi is made by taking the aver-
age of predictions from each tree:

ŷi = f̂(xi) =
1

B

B∑
b=1

fb(xi)

where B is the number of bootstrap samples (trees). Since
this is a classification problem, the final prediction on a
given example is made by taking the majority vote. One
common issue of the method is that individual trees are
highly correlated with each other, and the random forest
method addresses this problem. By randomly sampling
observations from training data and growing a decision tree
on each sample while only considering a subset of features,
trees in random forests share low correlation with other trees,
thereby reducing variance (James et al. 2013). Given this
design that de-correlates trees, this method can be effective
when features are highly correlated with each other.

4.4. XGBoost

In contrast to bagging methods like random forests, boosting
methods grow trees sequentially: each tree is built relying
on information of trees from the previous iteration. One
critical aspect of the method pertains to the weighting of
examples. Specifically, it assigns greater weights to mis-
classified examples, thereby allowing the model to improve
in each iteration. Instead of a simple boosting model, we
implement the XGBoost model, which has shown higher
efficiency and built-in regularized structure that mitigates
the overfitting issue. More formally, given the label yi ∈ R
and a vector of m features Xi ∈ Rm, the prediction ŷi is
made as:

ŷi = ϕ(Xi) =

K∑
k=1

fk(Xi), fk ∈ F

where fk corresponds to an independent tree structure q
and leaf weights w. The following regularized objective
function is optimized (minimized) to learn these functions:

L(ϕ) =
∑
i

l(ŷi, yi)+
∑
k

Ω(fk), Ω(f) = γT+
1

2
λ||w||2

where T is the number of trees in each leaf node. This
objective function is optimized using the second-order ap-
proximation (Chen and Guestrin 2016).

4.5. Bill Summary Text-Augmented Models (Doc2Vec)

For all baseline models described, we extend the data with
the word-embedding features obtained from implementing

Figure 1. Ensemble Stacking

Doc2Vec (Le and Mikolov 2014). Similar to Word2Vec,
a vector representation of words, Doc2Vec trains an un-
supervised algorithm that “represents each document by a
dense vector which is trained to predict words in the docu-
ment.” There are two different methods of obtaining these
paragraph vectors: distributed memory (“DM”) and dis-
tributed bag of words (“DBOW”). The former “considers
the concatenation of the paragraph vector with the word vec-
tors to predict the next word in a text window.” In essence,
this paragraph vector serves “as a memory that remembers
what is missing” from the given context, representing a
“topic” of the document/paragraph. DBOW, on the other
hand, does not take any ordering of the word into account
and trains by predicting words randomly sampled from the
given paragraph. Although it forgoes contextual informa-
tion, one advantage is the efficiency gain in memory, as
it does not require learning word vectors. Ballard (2021)
applies this method on bill texts and adopts a concatenated
version of these two embedding methods. We implement
all three variants to see which embedding yields the best
performance.

4.6. Ensemble Stacking

Aforementioned ensemble methods – random forests and
XGBoost – combine weak learners to generate a strong
learner, and stacking combines these strong learners to cre-
ate a stronger meta learner. Figure 1 shows the high-level
procedure of constructing this meta learner (Laan, Polley,
and Hubbard 2007). The general idea is to train individual
base learners, then train a model, a regularized logistic re-
gression, to assign weights to predictions produced by each
base learner. Nay (2017) adopts a very similar stacking
model in predicting bill passage rate, and we test whether
the architecture can be effective in predicting roll call votes.



5. Experiments/Results/Discussion
The main objective is to determine whether the proposed
methods can better predict legislators’ roll call behavior
than existing alternatives. Before delving into the results,
we describe the experimental design, briefly discuss the
hyperparameter tuning, then define the evaluation metric.

5.1. Experiment Setup

For all experiments, our models are trained and tested on
each Congress separately. The 70-20-10 split is applied to
the incumbent members. For the newly-elected members’
votes, we randomly select half of them and set them aside as
a separate test set for the purpose of evaluating how well our
models predict those members’ voting behavior. We adopt
the following set of baselines for the systematic assessment
of our models:

1. All Yea: most legislators tend to vote “yea” on bills
that make it to the chamber floor. This serves as the
common lower-bound baseline that existing studies
have adopted.

2. Ballard (2021) (Overall): though the time periods of
datasets do not coincide, their work, to our knowledge,
has achieved the highest accuracy on the prediction
task.

3. Patil et al. (2019) (New Members): the time periods
do not coincide, but their work specifically considers
the newly-elected/unobserved members, rendering it a
more suitable baseline for the models’ performance on
newly-elected members.4

5.2. Hyperparameter Tuning

There are many hyperparameters to tune given the variety of
models considered. For ensemble methods – Random For-
est, XGBoost, and Ensemble Stacking models – we tuned
each model using three-fold cross-validation, which sufficed
given the large number of observations. More specifically,
we implement the randomized grid search cross-validation
method to identify the most suitable hyperparameters for
each method and given Congress.5

4It is not clear whether Patil et al. (2019) specifically considers
newly-elected members in their analysis, as their writing suggests
excluding a randomly selected group of legislators from the train-
ing set. Nevertheless, given the alignment in purpose, we take their
work as a baseline.

5The detailed list of hyperparameters considered for each
method is relegated to the Appendix.

5.3. Evaluation Metric: Test Set Accuracy

We assess the performance of all models by computing
the prediction accuracy.6 For all overall results, reported
accuracy reflects averages weighted by the sample size of
each Congress.

5.4. Comparison of Baseline Models

Table 2 reports the performance of baseline models, and
there are at least two notable results. First, all baseline mod-
els perform very well, and each yields a higher accuracy
compared to the existing state-of-the-art. XGBoost seems to
slightly outperform both the regularized logistic regression
and random forest, but the difference appears negligible.
Second, word-embeddings do not significantly improve the
performance of each model, which suggests that bill and
legislator-specific features we included in the “base” version
of the model suffices in delivering information relevant in
predicting voting behavior.7 Lastly, figures 2 and 4 (Ap-
pendix) show that the majority of errors result from the false
positives – predicting yeas for actual nays. The better result
achieved by XGBoost might be attributable to its assigning
greater weights to mislabeled examples during the training,
and it shows lower false positive rates.

Table 2. Baseline Results by Models

Model Overall (Weighted Avg.)
Baseline (All Yea) 0.824
Ballard (2021) 0.948
Logistic Reg

Base 0.8997
DM 0.9442
DBOW 0.9442
DBOW-DM 0.9450

Logistic Reg w/ L1 Regularization
DBOW-DM 0.9428

Decision Tree Methods
Random Forest

Base 0.9510
DM 0.9513
DBOW 0.9513
DBOW-DM 0.9509

XGBoost
Base 0.9523
DM 0.9524
DBOW 0.9523
DBOW-DM 0.9521

Notes: Ballard (2021)’s results are based on the 104th-114th
congress. DM and DBOW embedding models each include 300
features, while DBOW-DM model includes 600 features.

6Specifically, we apply the following formula: Accuracy =

1−
(

1
N

∑N
i=1(|yi − ŷi|)

)
.

7Analyzing the most predictive features in the random forest
reveals the party affiliation of a given voter (legislator), the share
of opposite party members in co-sponsors of a given bill, and state
indicators (especially California) to be important.



Figure 2. XGBoost Confusion Matrix (117th Congress)

Based on these results, we conduct an error analysis of com-
paring training and test set errors to determine whether the
error results from bias or variance. Figure 3 plots the train
(solid) and test (dash) error rates of logistic regression (red),
random forest (green), and XGBoost (blue) models over
Congress. For logistic regression, except the ongoing 117th
Congress, for which we have fewer data, train errors are not
significantly greater than test errors, suggesting little or no
overfitting. This likely explains why regularization does not
improve the performance of the Logistic regression. A simi-
lar pattern holds for tree-based models, and training error is
generally lower than test error, which suggests overfitting,
hence high variance.

Figure 3. Error Analysis - Baseline Models

5.5. Comparison of XGBoost and Ensemble Stacking

We now implement the main model, the ensemble stacking
model that takes the three baseline models as base learners.
In the analysis, we also include XGBoost for the compari-
son, as it performed the best of the three. Table 3 reports
the results for the incumbents and the new members. Al-
though the stacking model does not yield a noticeably higher
prediction accuracy, both baseline and bill-text augmented
versions of the model outperform XGBoost counterparts.
Figure 5 in the Appendix shows the results for the 117th
Congress, and it remains to show a higher false-positive
than false-negative rates.

Table 3. Main Results by Congress

Model - Congress 113 114 115 116 117 Overall
Incumbents

Baseline (All Yea) 0.814 0.811 0.838 0.797 0.746 0.813
Ensemble Stacking

Base 0.95 0.956 0.957 0.954 0.954 0.9545
DM 0.952 0.956 0.958 0.952 0.953 0.9548

XGBoost
Base 0.951 0.955 0.957 0.954 0.952 0.954
DM 0.950 0.957 0.958 0.952 0.951 0.954

Newly Elected Members
Baseline (All Yea) 0.809 0.890 0.856 0.827 0.615 0.836
Patil et al. (2019) - - - - - 0.861
Ensemble Stacking

Base 0.938 0.962 0.950 0.959 0.909 0.9541
DM 0.937 0.961 0.950 0.958 0.908 0.954

XGBoost
Base 0.937 0.962 0.948 0.961 0.918 0.950
DM 0.937 0.963 0.949 0.960 0.910 0.950

6. Conclusion
We developed methods for predicting roll-call votes based
on bill texts and some simple congress member features.
Our models generally outperform existing methods,
with the largest improvement seen in predicting votes
by newly-elected members. Across almost all metrics,
ensemble stacking achieves the best performance, as
it combines predictions generated by all base learners.
Logistic regression tends to perform the worst, presumably
because it fails to account for interactions among features
(e.g. members from the Democratic Party may be more
likely to vote “yea” on bills related to infrastructure,
hence an interaction between member partisanship and bill
content).

The remaining errors may reflect factors not accounted for
by our input, such as the district each member represents and
sources of their campaign finance. Incorporating campaign
contribution data as in Bonica (2018) into our models would
be an interesting direction for future extensions.



Contributions
• Tom (Hyeon Seok) Yu

– Collecting and processing bill-level data.

– Implementing Doc2Vec

– Implementing tree-based and ensemble stacking
methods

– Majority of the writing

• Floyd Jiuyun Zhang

– Collecting and processing roll-call and member
data; linking roll-call to bills

– Implementing Logistic regressions

– Minority of the writing

– Poster

Appendix
Additional Figures and Tables

Figure 4. Random Forest Confusion Matrix (117th Congress)

Figure 5. Ensemble Stacking Confusion Matrix (117th Congress)

Hyperparameter Tuning for each Method

Below lists all hyperparameters tuned using the
RandomizedSearchCV package from scikit
API. For each parameter, a range or a set of values is con-
sidered at each iteration. We limit the number of iterations
to 10 due to time constraint. Detailed specifications for
each Congress are omitted and available upon request.

• Logistic regression: {L1 regularization term λ}

• Random Forest: {number of trees, max. depth of each
tree, max. number of features, min. number of samples
required to split an internal node, min. number of
samples required to be at a leaf node}.

• XGBoost: {number of trees, max. depth, learning rate,
L1 regularization term (α) on weights, subsample ratio
of training instances, subsample ratio of columns when
constructing each tree, subsample ratio of columns at
each level of depth}.

• Ensemble stacking: {regularization method (lasso,
ridge, elastic net), the regularization term weight λ,
the weight on each regularization term for elastic net}.
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