

Experience

Amazon Web Services (AWS) — <i>Economist II, Central Economics & Science Team</i>	Feb 2025 – Present
<ul style="list-style-type: none"> Transformer-Based Causal Inference: Developed counterfactual revenue prediction system by fine-tuning Mistral-7B with LoRA on text-templated customer journeys (FSDP across 8 A100 GPUs; vLLM for 13.8x inference speedup) based on Athey et al.'s LABOR-LLM framework. Enables treatment effect estimation in multi-treatment, sequential-confounding settings where conventional causal inference methods like DiD/synthetic control might not be applicable. Economic Impact Measurement (\$163M Program): Designed quasi-experimental evaluation using AIPW with doubly-robust estimation to correct for selection into treatment. Quantified causal revenue impact across heterogeneous customer segments, directly informing reallocation of multi-million dollar partner investment portfolio. Growth Decomposition & Policy Analysis: Built CLV framework (survival analysis + Random Survival Forest) decomposing growth into acquisition, retention, and per-customer trajectories. Delivered rapid causal analysis of credit and payment policies within 2 weeks (est. \$150M+ annual savings). Churn Measurement Framework: Developed and validated standard-deviation-based churn metrics adopted by sales teams for real-time customer health monitoring and proactive retention interventions. 	
Tesla — <i>Senior Data Scientist, Core Business (Sales, Service, Delivery)</i>	Apr 2024 – Feb 2025
<ul style="list-style-type: none"> Built ML-based service demand forecasting for 250+ North American service locations (50% accuracy gain over baseline), directly informing staffing and capacity allocation decisions (\$10M+ impact). Applied synthetic control methods to estimate causal sales lift from marketing campaigns; designed A/B tests with HTE estimation to identify high-conversion customer segments for targeted lead generation. 	
Netflix — <i>Experimentation & Causal Inference Intern</i>	Jun – Sep 2023
<ul style="list-style-type: none"> Developed IPW and entropy balancing methods to correct non-response bias in large-scale user surveys; built ensemble ML models (GBM, RF) as proxy quality metrics to guide content evaluation decisions. Collaborated cross-functionally with engineering and design teams to operationalize survey-based metrics into product decisions. Return offer. 	
Analysis Group — <i>Analyst, Economic Consulting</i>	Aug 2016 – May 2017
<ul style="list-style-type: none"> Applied DiD and instrumental variables methods to quantify macroeconomic impact of client products across Latin American markets. Supported expert testimony and policy briefs in litigation and regulatory proceedings. 	

Research

Dissertation: <i>Essays in Political Economy: Status Perceptions and Survey Experiments</i>	Stanford GSB, 2024
Chair: Matthew Gentzkow · Committee: Neil Malhotra, Ken Shotts	
<ul style="list-style-type: none"> Conducted randomized survey experiment ($N > 10,000$) estimating causal effects of status perception shocks on populist attitudes. Applied HTE estimation, causal mediation analysis, and ordinal data methods for robustness. Proposed control-augmented Thompson Sampling algorithm for best-arm identification, demonstrating precision gains over uniform randomization in budget-constrained multi-arm experiments. 	

Selected Working Papers:

<ul style="list-style-type: none"> <i>LLM-Based Causal Inference for Counterfactual Prediction</i> (2025) — Extends Athey et al.'s LABOR-LLM text-template approach to causal settings; LoRA-fine-tuned Mistral-7B as flexible estimators for HTE in panel data with sequential treatment histories. <i>Electoral Insecurity & Federal Spending: Panel Matching and Synthetic Control Methods</i> — Demonstrates improved covariate balance and robustness over conventional DiD using matching and synthetic control. <i>Predicting Roll Call Votes using Machine Learning Methods</i> (with F. Zhang) — Ensemble stacking of bill text embeddings and legislator features; outperforms existing prediction methods.
--

Education

Stanford University	Stanford, CA
<i>Ph.D., Political Economy · M.S., Statistics</i> (Advisor: Percy Liang)	2017 – 2024
Coursework: Econometrics (panel, time series, structural), Machine Learning, Causal Inference, Labor Economics, NLP	
Middlebury College	Middlebury, VT
<i>B.A., Economics, Summa Cum Laude · Phi Beta Kappa · Class Salutatorian</i>	2012 – 2016

Technical Skills

Causal Inference: Difference-in-Differences, Synthetic Control, Propensity Score Methods (IPW, AIPW), Instrumental Variables, Regression Discontinuity, Matching, Survey Experiments, Best-Arm Identification
Economic Research: Large-Scale Data Analysis, Structural Estimation, Panel Econometrics, Time Series Forecasting, Heterogeneous Treatment Effects (HTE), Power Analysis, Sequential Testing
ML/AI: Transformers (Mistral-7B, LoRA fine-tuning, vLLM), Gradient Boosting (XGBoost, LightGBM), Random Forests, Survival Analysis, LSTM, NLP, Ensemble Methods
Programming: Python (pandas, scikit-learn, PyTorch, statsmodels, Hugging Face), SQL, R, Stata · Distributed training (FSDP), cloud infrastructure (AWS SageMaker)